

MOVI™ Voice Dialog Shield
for ArduinoⓇ boards

User’s Manual

covers MOVI™ Firmware v1.10

Legal Information

This manual is copyright © 2015-2017 by Audeme LLC. All Rights reserved.

Redistribution or reproduction of part or all of the contents of this manual is permitted for

personal or commercial use only if you acknowledge this manual as the source of the

material.

MOVI™ and the Audeme logo are trademarks of Audeme LLC. All other trademarks

mentioned in this manual are trademarks or registered trademarks of their respective

owners, whether explicitly marked or not. Reference in this manual to any specific

commercial products, processes, or services, or the use of any trade, firm or corporation

name is for the information and convenience of the reader, and does not constitute

endorsement, recommendation, or favoring by Audeme LLC.

ALL MATERIALS IN THIS MANUAL ARE PROVIDED "AS IS" WITHOUT WARRANTY OF ANY

KIND, EXPRESSED OR IMPLIED, INCLUDING WARRANTIES OF MERCHANTABILITY, FITNESS

FOR A PARTICULAR PURPOSE, TITLE, AND NON-INFRINGEMENT.

The materials posted on this manual could include technical or other mistakes or

inaccuracies. Audeme LLC disclaims all warranties and makes no representations

regarding the quality, accuracy, completeness or suitability of the materials on this or any

other website, and disclaims any duty to keep this information current or accurate.

Audeme LLC may change any information on their site or this manual or any product or

service described on this manual, including functionality or performance thereof, any

time without notice.

This manual contains links to other websites that are not hosted by Audeme LLC. These

websites are not under the control of Audeme LLC. Audeme LLC is not responsible for

their content or the content of any information linked to these websites. Links to other

websites are provided as a convenience to our readers and do not imply any

endorsement by Audeme LLC of information contained in these websites or the

organizations that support them.

Please refer Appendix G for further legal terms and conditions.

2 MOVITM User’s Manual Revision 1.10 -- February, 20th 2017

Acknowledgements

MOVI™ would not have been possible without the enduring feedback and assistance of

many people. First, we’d like to thank the 334 Kickstarter backers who, through their

financial contribution, questions and comments allowed us to make this project happen.

A list of the backers is available here: http://www.audeme.com/kickstarter-backers.html

Moreover, we are grateful for the voluntary help by our beta testers Jared Peters, Julius

Sanchez, Lars Knipping and Dylan Kucera.

We are also indebted to the open source community. Without the many people creating

open source tools, we wouldn’t been able to put together MOVI. MOVI uses the following

open source packages:

- The Advanced Linux Sound Architecture (ALSA) project
(http://www.alsa-project.org)

- eSpeak text to speech (http://espeak.sourceforge.net/)
- CMU Sphinx and PocketSphinx (http://sourceforge.net/projects/cmusphinx/)
- The OpenFst Library (http://www.openfst.org/twiki/bin/view/FST/WebHome)
- The Many-to-Many alignment model (https://code.google.com/p/m2m-aligner/)
- CMUCLMTK (http://cmusphinx.sourceforge.net/wiki/cmuclmtkdevelopment)
- The Phonetisaurus package (https://github.com/AdolfVonKleist/Phonetisaurus)
- The MIT Language Modeling Toolkit (https://code.google.com/p/mitlm/)
- SVOX Pico (https://launchpad.net/ubuntu/precise/+source/svox/+copyright)

MOVI is booting a standard Linux Kernel using u-boot and is relying on many of the GNU
standard tools and libraries such as GLIBC, bash, etc. We also make extensive use of
Python (https://www.python.org/).

The microSD card shipped with MOVI has a mountable ext3 partition “MOVI Root” which

contains a directory src/ with instructions on how to obtain the source code for any of the

open source packages we used, independently of the any license requirement for us to

do that.

Ultimately though, we need to thank you, the reader of this document, for your interest

and commitment. Users are what makes a product.

Thank you so much for all your support!

3 MOVITM User’s Manual Revision 1.10 -- February, 20th 2017

http://www.audeme.com/kickstarter-backers.html
http://www.alsa-project.org/
http://espeak.sourceforge.net/
http://sourceforge.net/projects/cmusphinx/
http://www.openfst.org/twiki/bin/view/FST/WebHome
https://code.google.com/p/m2m-aligner/
http://cmusphinx.sourceforge.net/wiki/cmuclmtkdevelopment
https://github.com/AdolfVonKleist/Phonetisaurus
https://code.google.com/p/mitlm/
https://launchpad.net/ubuntu/precise/+source/svox/+copyright
https://www.python.org/

Table of Contents

Legal Information

Acknowledgements

Table of Contents

1. Introduction

2. Board Description
Power Supply
Speakers
Audio Input
LED
Reset Button
Jumper 1 (5V_REF)
Jumper 2 and Jumper 3 (Alternative Serial Communication)

3. Getting Started

4. Getting the Best Speech Recognition Results
Operation Modes
Training Sentences vs Words, also: Numbers
Saving Arduino Memory

5. MOVI Backup and Firmware Updates
Linux and Mac OS X
Windows

Backing up the SD Card
Updating the SD Card. Method 1: Safe but slow
Updating the SD Card. Method 2: Fast

6. Further Information

7. FAQ

Appendix
A. Compatibility

General Compatibility
Uno R1 and R2, MEGA2560 R1 and R2, Leonardo R1 and R2
Uno R3, Mega2560 R3, Leonardo R3

4 MOVITM User’s Manual Revision 1.10 -- February, 20th 2017

Freeduino
Olimexino-328
Diavolino
Arduino Yun
Arduino Due
Arduino Zero, M0, Zero Pro and M0 Pro
Microchip uc32, Microchip WF32, Microchip Wi-Fire and similar PIC32 boards
Intel Galileo Gen 2
Intel Edison
Boards our users have been able to get to work with MOVI
Boards we have not been able to get to work with MOVI

B. MOVIShield Library Reference
Methods that must be used in setup()

MOVI constructors
Initialization methods

Methods that are typically used in setup() but can also be used in loop()
Methods that are typically used in loop()
Infrequently used advanced commands

C. The Low Level Interface
D. MOVI Event Categories
E. Commonly Used Speech Synthesizer Commands
F. Special Files on the SD card

Playing sound files
Changing the communication bit rate
Voxforge.org models

G. Terms and Conditions

5 MOVITM User’s Manual Revision 1.10 -- February, 20th 2017

1. Introduction

Welcome to MOVI!

MOVI stands for My Own Voice Interface and is the first standalone speech recognizer and

voice synthesizer for Arduino with full sentence capability, natively supporting English

and optionally other languages from Voxforge.org:

● Lots of space for customizable English sentences (we tested up to 200, users

reported up to 1000)

● Speaker independent

● Standalone, cloudless and private

● Easy to program

● Different, configurable speech synthesizers included

MOVI provides an alternative to buttons, remote controls, or cell phones by letting you

use full-sentence voice commands for tasks such as turning devices on and off, entering

alarm codes, and carrying on programmed conversations with projects.

This manual will guide you through the first steps, provides compatibility information and

serves as a programming reference. It will also give you some tips on how to get the best

speech recognitions results with MOVI. We know how boring it seems to have to read a

manual when a shiny device just arrived in the mail and all we want is to get our hands

on it... However, the world of speech recognition is not only fascinating but also

sometimes tricky and things that should be easy aren’t while things that should be hard

just miraculously work. So we strongly recommend to not only read this manual but to

also keep it handy. Further information can be found on our website, especially in the

ever-growing forum: http://www.audeme.com/forum.html

Yours,

Bertrand Irissou and Gerald Friedland

Makers of MOVI

6 MOVITM User’s Manual Revision 1.10 -- February, 20th 2017

http://www.audeme.com/forum.html

2. Board Description

Figure 1. Birds-eye view of the MOVITM board.

Figure 1 shows your MOVI board from the top with a legend of the most important

components.

Power Supply

What you don’t see in Figure 1 is a power supply jack. MOVI is powered through the

Arduino board that needs to be powered using an external power supply. The external

power supply should provide between 7V and 16V and at least 500mA current. During

tests we usually used either 9V or 12V. Battery packs with this specification work as well.

Please note: MOVI cannot be powered through a USB power supply or the USB

cable of the Arduino board as the voltage provided is less than 6V.

7 MOVITM User’s Manual Revision 1.10 -- February, 20th 2017

Speakers

To get audio feedback (including error and system messages), MOVI requires a speaker

connected to Audio Out. The speaker can be mono or stereo but the signal provided by

MOVI is mono. The speaker impedance should be 32 ohms, which is the standard

impedance for headphones. The output volume can be controlled in software using the

MOVI library (see Appendix B and C). For convenience, we recommend active speakers

with an amplifier and volume control.

Note: You cannot connect 4 ohm or 8 ohm speakers. Especially high-wattage

speakers require an amplifier and might damage the board.

Note: Only connect 3-conductor (stereo) headphone jacks to MOVI. 2-conductor

(mono) and 4-conductor jacks (stereo plus microphone), require an adapter.

Audio Input

By default, the integrated microphone (see Microphone in Figure 1) is used. This

microphone is internally connected to an Automatic Gain Control that will amplify

incoming sounds to standard level independently of the distance. This will work up to

about 15 feet (5 meters), in a quiet environment. Under bad conditions (noise, room

echo) the distance will be shorter. For usability reasons or in difficult environmental

conditions, a headset microphone should be used. A headset microphone or an

alternative electret microphone can be connected to External MicIn. This audio jack is a

stereo jack but only accepts a mono signal. Connecting a device to External MicIn disables

the integrated microphone. Also, the signal that comes through External MicIn is not

amplified.

Note: Do not connect a Line-In signal or any other signal that is pre-amplified to the

microphone jack. Also, microphones that require phantom power will not work.

Note: Only connect 3-conductor (stereo) headphone jacks to MOVI. 2-conductor

(mono) and 4-conductor jacks (stereo plus microphone), require an adapter.

8 MOVITM User’s Manual Revision 1.10 -- February, 20th 2017

LED

MOVI uses the LED as an indicator for the state that MOVI is in. The following states are

signalled:

LED off: LED constantly off means MOVI is turned off, there is not enough power to

operate, and/or the SD card is not plugged in.

LED blinking faster and faster: MOVI is booting.

LED blinking randomly : MOVI is writing to the SD-Card. This happens during an update,

training, or resetting to defaults. MOVI should not be powered off while the LED is

blinking randomly.

LED blinking with constant frequency: If MOVI’s LED is blinking with constant

frequency, there is a serious issue with the SD-Card e.g., MOVI’s file system check failed

permanently.

LED constantly on: MOVI’s LED constantly on indicates MOVI is ready to operate or is

operating normally. Only in this state, MOVI will recognize the call sign and the

programmed sentences.

Reset Button

The button is programmed as a reset button on a short press. MOVI will reboot (not the

underlying Arduino board though). Please do not press the reset button while the LED

blinks with randomly (see above).

A long press will revert MOVI’s callsign, trained sentences and other configuration

parameters to factory default. Please note, that the board can’t be reset and

shouldn’t be powered off during the restoration process.

Jumper 1 (5V_REF)

On most boards Jumper 1 must be open. Jumper 1 only needs to be closed when a 5  V

board is used that does not have the IOREF pin. This is explained in detail in Appendix A.

9 MOVITM User’s Manual Revision 1.10 -- February, 20th 2017

Caution: Jumper 1 hard wires the 5 V pin to IOREF. Therefore, setting Jumper 1 on a

3.3V board will destroy the board!

Jumper 2 and Jumper 3 (Alternative Serial Communication)

In most cases, Jumper 2 and Jumper 3 should be closed. By default, MOVI is using

Arduino pins D10 and D11 for communication between shield and board. If these pins

are used for other purposes or by another shield, Jumper 2 and Jumper 3 can be used to

rewire the communication. Also, some boards, such as the Arduino Due, are not able to

have serial communication on D10 and D11 and therefore need to be rewired for MOVI

to operate. Refer Appendix A for details.

To rewire MOVI’s communication to different pins, open Jumper 2 and Jumper 3 and

connect the left side of MOVI's TX jumper (Jumper 2) and the left side of MOVI's RX

jumper (Jumper 3) to two other connectors on the Arduino headers using jumper wires.

The left side is the pin that is further away from the Arduino headers and the microphone

(MIC1) and closer to the button.

10 MOVITM User’s Manual Revision 1.10 -- February, 20th 2017

3. Getting Started

If you use a new Arduino UNO R3, an Arduino MEGA R3 or an Arduino Leonardo R3 (with

an IOREF pin) go right ahead through this Section. If you are not sure or use any other

board, including older versions of the UNO, MEGA and LEONARDO and “compatibles”

please read Appendix A first.

You will need:

● A computer that can run the Arduino IDE

● your MOVI board

● An Arduino compatible board (Uno, Yun, etc..)

● your Arduino programming cable

● an external power supply

● A pair of headphones or an active speakers that can be driven by a headphone

jack

● Optional: A green and a red LED for some of the example sketches

11 MOVITM User’s Manual Revision 1.10 -- February, 20th 2017

1. Download and install Arduino IDE recommended for your board.

To do that, follow the instructions in your Arduino documentation or on this

website: https://www.arduino.cc/en/Main/Software

2. Download the MOVI library as a zip file from http://www.audeme.com/MOVI/.

Users familiar with both MOVI and open source programming may also check out

the latest source code from https://github.com/audeme/MOVIArduinoAPI.

3. Install the MOVI library into the Arduino IDE. Instructions on how to install a

library can be found here: https://www.arduino.cc/en/Guide/Libraries

4. Load the LightSwitch example by opening the File menu under Examples . Choose

MOVI or MOVI(tm) Voice Dialog Shield , depending on the version of the IDE. The

result should look similar to this:

12 MOVITM User’s Manual Revision 1.10 -- February, 20th 2017

https://www.arduino.cc/en/Main/Software
http://www.audeme.com/MOVI/
https://github.com/audeme/MOVIArduinoAPI
https://www.arduino.cc/en/Guide/Libraries

5. Disconnect all power and USB

cables from your Arduino board

and connect the MOVI shield onto

it:

6. Connect an external speaker or a

headset to the Audio Out (see

Section 2). Audio Out is labeled

“HEADPHONES” and is the audio

jack further away from the

integrated microphone, closer to

the Arduino headers.

7. On an Arduino board with IOREF

pin, make sure Jumper 1 is open

(unset). Otherwise, check Appendix

A about the best setting for Jumper

1. Connect the external power

supply to the Arduino board and

switch it on.

13 MOVITM User’s Manual Revision 1.10 -- February, 20th 2017

8. After about 2 seconds, you should

see MOVI’s LED (close to the

microphone) blinking with

increasing frequency. The speakers

will say “MOVI is booting”.

Eventually the LED will stop blinking

and just be constantly on. This

indicates MOVI is ready. If the LED

does not go on at all, please turn

off the power and read Appendix A.

If, by the time, the LED has become steady red, you didn’t hear anything, please

check your speakers/headset and the connection.

9. Connect the USB programming cable to the Arduino board.

Important: Always, connect the USB cable after you have connected the external power

supply. It is safe to disconnect the USB while the power is on. With the exception of MOVI

updating, learning a new call sign, learning new sentences, or resetting to factory

settings, you can always unplug the power safely. MOVI’s LED (close to the microphone,

see image) will blink randomly while it is not safe to unplug. However, do not

disconnect the external power while the USB cable is plugged to the Arduino.

Powering MOVI from USB will not supply enough voltage to the board and will

therefore leave MOVI in an unstable state where the LED might be on or blinking

but MOVI not work properly.

10. In the Arduino IDE, compile and upload the LightSwitch Example.

11. Get close to the microphone capsule and say “Arduino” in a normal voice, wait for

<beep beep>. Say “Let there be light”. Wait for <beep>.

14 MOVITM User’s Manual Revision 1.10 -- February, 20th 2017

12. Speakers should say “and there was

light” and LED on Arduino board

turns on. Please note that Arduino’s

onboard LED might be a bit hidden

below the MOVI shield. For better

visibility, connect an LED to Arduino

port D13 (+) and GND (-).

13. Say “Arduino”, wait for <beep beep>. Say “Go dark”. Wait for <beep>

14. LED on Arduino board turns off.

15. Congratulations! You have completed your first voice recognition project!

You can now play around with the code and or load other examples. The examples are

sorted in increasing level of difficulty. Many of them don’t require extra hardware and

feature various aspects of MOVI’s functionality.

To find out more, we especially recommend reading Section 4 and checking out our user

forum at http://www.audeme.com/forum.

15 MOVITM User’s Manual Revision 1.10 -- February, 20th 2017

http://www.audeme.com/forum

4. Getting the Best Speech Recognition Results

Read this section when everything is setup and you have had your first experiences with

MOVI but before you are about to plan out your first bigger project. Speech Recognition

can be tricky and sometimes things just need a little `magic` even when everything was

setup correctly. After all, speech recognition is still a field of active research and many

problems haven’t even been nearly solved

(http://en.wikipedia.org/wiki/Speech_recognition). Having said that, knowing how MOVI

principally works will help tinkering with issues that come up.

Operation Modes

MOVI’s speech recognizer has two basic modes of operation, training and recognition,

which are described as follows.

Training: MOVI’s Arduino library sends the training sentences in textual form over the

serial connection to the shield. The shield phonetizes the words in each sentences using

a 2  GB English dictionary that knows spelling rules and approximates even for proper

names. The phoneme sequences are used to create a temporal model that makes sure

that only words are recognized that have been part of the training sentences. A second

temporal model favors word sequences that are part of the sentences over sequences

that are not by assigning higher probabilities to phoneme sequences that occurred in the

trained sentences over those that didn’t.

Recognition : During recognition, a waveform comes in over the microphone and is

broken down into speech and non-speech regions. This is done by an algorithm that

monitors the energy of the incoming signal over a short time period and compares it to a

threshold. If the pattern looks like speech and speech pauses, it assumes speech,

otherwise the signal is ignored. The speech regions of the signal are then passed to a

classifier that has been trained on hundreds of adult speakers. It breaks down the

waveform into possible phonemes sequences. Using the temporal model created in

training, the phoneme sequences are matched to the pre-trained words and also word

sequences that are part of the training sentences are favored. A last correction step

16 MOVITM User’s Manual Revision 1.10 -- February, 20th 2017

http://en.wikipedia.org/wiki/Speech_recognition

maps the words to the most likely sentence in the training set (result from poll()). This

second step can be omitted in the library by using getResult() .

Now that we’ve got that out of the way, let’s discuss some common issues.

Training Sentences vs Words, also: Numbers

Let’s assume you want to recognize any combination of numbers between one and three.

Is it better to train one sentence “one two three” or three ‘sentences’ “one”, “two”, and

“three”? If the goal is to recognize any combination of the numbers one, two, and three

and each of them are equally likely to appear, it’s best to train three sentences and use

the getResult() method. Training one sentences will work too but there is a high likelihood

that the recognizer will favor “one two three”.

If it’s really always a combination of three different numbers between one and three, it is

preferable to train all six combinations of “one two three”, “one three two”, “two three

one”, “three two one”, “two one three”, “three one two”. This way, poll() can be used and

MOVI’s algorithm can correct errors.

What if the combination of numbers was between 1 and 10? We have tested MOVI

successfully with about 150 short sentences and we are pretty sure there can be some

more but we also know training 10! = 3628800 sentences will not work. So obviously 10

sentences need to be trained and getResult() needs to be used.

What if only one number between one and ten was to be recognized? In this, case it is

fine to train one sentence of (“one two three four five six seven eight nine ten”) since it

saves memory and training speed and the temporality isn’t used anyways as there is only

one word to be recognized. However, training ten sentences will not harm the

recognition accuracy.

What it there was some known word sequencing but not for the entire sentence? Let’s

say you want to recognize ‘0.x’ and ‘1.x’ with x being a number between 0 and 9. The best

way to do this is to train twenty sentences “zero point zero”, “zero point one”, “zero point

two”, ... “one point nine”. However, if the acoustic conditions in the room are good, it’s

feasible to break the sequences up into less sentences, for example: “zero point”, “one

17 MOVITM User’s Manual Revision 1.10 -- February, 20th 2017

point”, and 8 single word sentences “two”, “three”, “four”, etc... (the words zero and one

have already been trained). This may be further reduced to three sentences by making

the numbers 2-9 one sentence “two three four five six seven eight nine ten”. Splitting up

this task in less than twenty sentences, however, requires to use the getResult() method.

The overall rule of thumb is: Favor training all known word sequences as sentences.

Otherwise, train words as sentences individually.

Sentences do not get higher priority if they are defined twice as, in fact, the system will

remove duplicate sentences. However, if one can give a certain sequence (out of many

possible) a higher priority by first defining individual word sentences and then the actual

sequence. For example, defining the sentence “one”, “two”, “three” and the sentences

“three two one” will give a higher probability to the sequence “three two one” than any

other sequence. This does play a role in noisy room conditions.

If you want to create a keyword spotter, e.g. recognize a particular word out of many, it’s

best to train a lot of other words as well. For example, if you want to recognize whenever

the word ”Simon” appears in a sentence, you would train the word “simon” as a sentence

along with a set of other words, for example words that appear very frequently in English

such as “the”, “be”, “to”, “off”, (for a more comprehensive list checkout this link:

https://en.wikipedia.org/wiki/Most_common_words_in_English) as well as words that are

similar to Simon (e.g, “assignment”). This way, these words are recognized and it lowers

the false alarm rate of MOVI detecting “Simon” when other words are spoken.

Please also note that for sentence matching (as part of the poll() function) it is best for all

trained sentences to have about equal length. A single very long sentence will always be

favored when a lot of words are spoken.

Saving Arduino Memory

Some Arduino models, especially the Uno, come with very limited memory. Using the

addSentence() commands in the init() method is convenient but it does mean that the

sentences are stored in Arduino’s memory even when MOVI has already learned them.

More on Arduino’s memory restrictions can be found here:

https://www.arduino.cc/en/Tutorial/Memory

18 MOVITM User’s Manual Revision 1.10 -- February, 20th 2017

https://en.wikipedia.org/wiki/Most_common_words_in_English
https://www.arduino.cc/en/Tutorial/Memory

The first solution is to uncomment the addSentence() and train() calls and re-compile and

upload after MOVI has learned the sentences. Please note, however, that the MOVI API

itself as well as another other libraries potentially included in a sketch also occupy some

SRAM. Another solution therefore is to use the so-called PROGMEM method and the F()

macro to store variables in flash memory. The concept is described here:

https://www.arduino.cc/en/Reference/PROGMEM

MOVI’s API allows to use F() macro strings to be used with addSentence, say, ask, and

password . This means addSentence(“Let there be light”) works as well as addSentence(F(“Let

there be light”) but the second options saves critical SRAM.

If the above tricks does not provide enough memory savings, then the best way is to use

the low level interface. Compile and upload the LowLevelInterface example (see

Examples/MOVI/proficient/LowLevelInterface in the Arduino IDE menu) or make sure the

MOVI object is constructed using ‘true’ as first argument. Open the Serial Console and

then use the manual TRAIN command as described in Appendix C. The TRAIN command

will ask for one sentence line by line (enter ends a sentence) until “# ” is used to finish the

input and will then automatically learn all the sentences given. Then switch back to your

project and use poll() and/or getResult() normally. Just make sure, no addSentence() or

train() call is used in your sketch, as this would overwrite your trained sentences.

Sentences are stored even after MOVI is reset or powered down until either retrained or

a factory reset is initiated, regardless of the method used for training.

Good Call Signs

Since MOVI maps any input to the trained words, regardless of how far off it is, MOVI

uses a keyword spotting algorithm to make sure the sound registered is going to be

intended for recognition. This cuts down on false alarm rates and allows MOVI to run in

the background, e.g. as a light switch that doesn’t go erratic while a TV is on. Good call

signs is pretty distinctive from other words. Obviously, choosing one syllable words such

as “the” or “to” as a call sign works pretty terribly. Similarly, common english words such

as hello are not a good idea since they are often spoken in conversation and would

trigger false positive. We found that names that are easy to pronounce and spell and

contain two to three syllables work the best. The default, “Arduino” has more syllables

19 MOVITM User’s Manual Revision 1.10 -- February, 20th 2017

https://www.arduino.cc/en/Reference/PROGMEM

but definitely works. So does “MOVI” or “computer”. Call signs from other personal

assistant speech recognition products, unsurprisingly, work well too.

The Role of the Acoustic Environment

Perhaps one of the most counterintuitive flaws of state-of-the-art speech recognizers is

that they can’t cope with the influence that the environment has on the acoustic

properties of the speech signal. At the same time, the human ear is incredibly good at it.

The human ear can ignore overlapping sounds, echo, reverberation, noise induced by

wind, etc. Speech recognizers are not able to do that or only to a limit extend. Room

influence is usually a bigger factor than individual speech variance, such as accent.

Having said that, speaking rate is a factor as well. Very slow or very fast speech is hard to

recognize as well.

While testing MOVI, we have observed situations where the room was completely silent,

yet MOVI had serious problems picking up the call sign. Analyzing the situation, we found

that there was too much reverberation in the room. It was not audible but clearly visible

on the oscilloscope. Short of installing carpet just to make MOVI work, we found different

locations in the room worked with different accuracy. Also, of course, the closer we

moved to MOVI’s integrated microphone, the better it work as this cuts down on the

room influence. Using a headset microphone worked perfectly.

The rule of thumb here is: Try to shorten the distance to the microphone as much as

possible. If in doubt, use a headset microphone connected to External MicIn.

Operating MOVI under Noisy Conditions

By default MOVI, will give a one-time spoken warning about a too noisy room

environment. Moreover, if you find that MOVI takes very long to acknowledge your

spoken sentence with beeps after you are finished, the noise level is too high. Needless

to say, with the presence of any kind of noise, recognition accuracy will go down,

especially when using the getResult() method.

The short version is: If there is significant noise in the room, use a headset microphone

connected to External MicIn.

20 MOVITM User’s Manual Revision 1.10 -- February, 20th 2017

If the noise isn’t too heavy and a headset is not in question, MOVI provides the

THRESHOLD command (or setThreshold() call in the MOVI library). The call sets the noise

threshold of the speech/non-speech detector component of the recognizer. The possible

values the command takes can be between 2 and 95 (percent). The factory default is 5

percent. We found that typically a value of 15 percent is good for somewhat noisy

environments and a value of 30 percent for very noisy environments. Ultimately,

however, experimentation in the concrete environment is the only way to determine a

good noise threshold.

In order to do this, use the low level interface with the MICDEBUG command. To access

the low level interface, compile and upload the LowLevelInterface example (see

Examples/MOVI/proficient/LowLevelInterface in the Arduino IDE menu) or make sure the

MOVI object is constructed using ‘true’ as first argument. Open the Serial Console in the

Ardunio IDE. Then issue the command MICDEBUG ON followed by RESTART . The recognizer

will restart and operate normally, with the exception that every detected input is played

back through the speakers, which allows to listen to the speech signal (and other noise)

as captured through the microphone (or connected headset). In the Serial Console, now

slowly increase the value of the energy threshold by issuing THRESHOLD commands (e.g.

THRESHOLD 5 , THRESHOLD 10 , THRESHOLD 15) and calling MOVI and speaking a sentence

until in between each THRESHOLD call until MOVI’s reaction time seems normal again.

MICDEBUG OFF followed by a RESTART will set MOVI back to normal. Setting the threshold

too high, however, will make MOVI insensitive and you will probably have to yell at it. ;-)

21 MOVITM User’s Manual Revision 1.10 -- February, 20th 2017

5. MOVI Backup and Firmware Updates

MOVI is a company-supported product and Audeme will from time to time provide

updates to its firmware to improve performance and add features. MOVI’s firmware is

updated by putting an update file onto the SD card. Therefore, to update MOVI’s

firmware, you need access to an SD-Card writer and, most likely, a micro SD to SD Card

adapter. It is wise to back up your MOVI SD Card first before installing the firmware

update. MOVI's SD Cards are board specific and replacing them is difficult. Follow these

steps based on your operating system.

Linux and Mac OS X

1. Download the update file provided by Audeme’s website to a computer that has

an SD-Card writer. Please make sure only to use update files from our website.

The files are called update-xzy.movi , with xzy being a serial number that does

not necessarily correspond to the version number advertised. If you are not sure

which version you need and/or you see multiple update files, it is safe to

download all of them and put all of them on the SD card by following the steps

outlined below.

2. Unplug all power connections, as well as the USB cable from the Arduino and

remove MOVI’s SD Card by pressing on it gently before pulling it out. Leave the

shield on the Arduino.

3. Put the SD Card into the computer.

4. MOVI's SD Cards are board specific and replacing them is difficult. Therefore, it is

wise to create a backup of the sd card and keep it safe. There are many tutorials

on how to do this. We particularly liked this one:

https://smittytone.wordpress.com/2013/09/06/back-up-a-raspberry-pi-sd-card-usi

ng-a-mac/

Btw.: You can use any micro SD Card with at least 4GB. So using a new one for

every update is an even safer alternative.

22 MOVITM User’s Manual Revision 1.10 -- February, 20th 2017

https://smittytone.wordpress.com/2013/09/06/back-up-a-raspberry-pi-sd-card-using-a-mac/
https://smittytone.wordpress.com/2013/09/06/back-up-a-raspberry-pi-sd-card-using-a-mac/

5. After you backed up your SD card, you should already have seen either one or two

file systems appear automatically: MOVI UPDATE and MOVI Root. The latter is an

ext3 (Linux) file system that will only appear if your operating system is able to

mount ext3 filesystems. It can be used to perform manual changes on MOVI, e.g.

by accessing and compiling source code. On Mac computers, only MOVI UPDATE

will appear unless you have a driver for ext3 filesystems.

6. Copy the update file downloaded in step 1 onto the the MOVI UPDATE partition.

7. Eject (or unmount) the SD Card correctly. If the MOVI Root partition is visible on

your computer, make sure to cleanly unmount this partition as MOVI’s file system

check capabilities are limited.

8. Re-insert the SD Card into MOVI by gently pressing the card in until it locks.

9. Connect speakers to MOVI as it is wise to listen to the messages during the update

process.

10. Do not connect any USB cable but power up the Arduino/MOVI combination using

an external power supply and listen to the status messages on the speakers. The

update should be performed automatically. The speakers will let you know when

the process is finished. It is very important not to unplug MOVI while the update is

in progress. Partial updates might make MOVI unusable. If this happens, restore

the sd card from the backup created in step 4.

11. Once the update finished, MOVI will automatically restart and work as usual

(except with a newer firmware). If you put several update files on the sd card, the

process will repeat for each valid update file.

12. In order to use the new features from the firmware, please don’t forget to

download and install the updated Arduino library as well.

Windows

Upfront note: As of writing this manual, no version of Microsoft Windows supports

accessing multiple partitions on an SD Card. This makes the process of backing up and

updating MOVI with a Windows computer a lot more cumbersome. During our beta

phase, testers responded that it was easier to find a Linux or a Mac than to go through

the procedure under Windows. Our suggestion is therefore to use Mac OS X or Linux and

23 MOVITM User’s Manual Revision 1.10 -- February, 20th 2017

follow the steps outlined above . Having said that, here is how you can update MOVI 1

under Windows.

Backing up the SD Card

1. Download and install a tool to create hard-disk images from an SD card. Disk Imager is

free and open source and well-recommended in the Internet of Things community:

http://sourceforge.net/projects/win32diskimager/files/latest/download

2. Unplug all power connections, as well as the USB cable from the Arduino and remove

MOVI’s SD Card by pressing on it gently before pulling it out. Leave the shield on the

Arduino.

3. Put the SD Card into the computer. Windows will assign a drive letter to it. But the

drive you see should not be accessed in any way as you might damage the card. (If you

are interested: Windows mistakenly assigns the first partition a drive letter and claims it

is the fourth partition). Keep in mind that MOVI's SD Cards are board specific and

replacing them is difficult. However, remember the assigned drive letter. In our image it’s

drive D:.

1 Also, many Linux distributions can be booted from USB or CDROM without installing or altering your computer
in any way. One example of such a distribution can be found here:
http://www.ubuntu.com/download/desktop/try-ubuntu-before-you-install

24 MOVITM User’s Manual Revision 1.10 -- February, 20th 2017

http://sourceforge.net/projects/win32diskimager/files/latest/download
http://www.ubuntu.com/download/desktop/try-ubuntu-before-you-install

The Windows Explorer shows a disk after inserting MOVI’s SD card but this disk must

not be modified in any way! It contains system files vital to MOVI. Changing them will

lead to MOVI not working. Placing update files in there will not work either. However,

remember the driver letter for the update process, here D:.

4. Start DiskImager or a similar tool (see step 1) and save an image of the SD card onto

your computer. The image will take 4GB of space.

Use DiskImager to read the SD card bit-by-bit. Here: Transferring the content of drive D:

to the file movi-sdcard.img (in the user’s Download directory).

Once you’ve got the image, you may make a copy of the file into a safe location, so you

have the original image as a backup.

Updating the SD Card. Method 1: Safe but slow

1. Create a backup image of the SD Card as outlined in the previous section. You will not

be able to proceed without it.

2. Download and install a tool to assign a drive letter to partitions inside the hard disk

image of an SD Card. In Unix-lingo, this is called “mounting”. The tool we tested for this is

called OSFMount. It is freely obtainable here:

http://www.osforensics.com/tools/mount-disk-images.html

3. Download the update file provided by Audeme’s website to a computer that has an

SD-card writer and the tools installed from step 1 and 2. Please make sure only to use

update files from our website. The files are called update-xzy.movi , with xzy being a

25 MOVITM User’s Manual Revision 1.10 -- February, 20th 2017

http://www.osforensics.com/tools/mount-disk-images.html

serial number that does not necessarily correspond to the version number advertised. If

you are not sure which version you need and/or you see multiple update files, it is safe to

download all of them and put all of them on the SD card by following the steps outlined

below.

4. Now start OSFMount or a similar tool (see step 2) and load the image created in the

previous step and assign a drive letter to partition 3 (WIN95 FAT32) as shown in the

images below.

Dialog 1: After selecting the file under File/Open, OSFMount asks for the partition to

mount. Chose the fourth and last partition, labelled Partition 3.

26 MOVITM User’s Manual Revision 1.10 -- February, 20th 2017

Dialog 2. When the partition is selected, chose the drive letter (here E:) and mount the

partition as a writeable device (uncheck read-only) and also mount it as a removeable

device, so it can be ejected later.

Dialog 3. Pressing OK on the previous dialog, should lead to this Window. Leave it open.

5. Go into Windows Explorer and find the drive you just created in the previous step.

Verify that this drive should have a size of about 100MB and have no files on it. The drive

does not need any formatting or other preparation. Just copy the update file(s)

27 MOVITM User’s Manual Revision 1.10 -- February, 20th 2017

(downloaded in step 3) onto the drive. If you want to put any other files on the sd card,

e.g. sound files or language packs, now is the time to copy them to the drive.

Dialog 1. This is how the partition mounted in the previous step presents itself as a drive

in Windows Explorer.

Dialog 2. Copy the update file onto the drive created with OSFMount.

28 MOVITM User’s Manual Revision 1.10 -- February, 20th 2017

6. Eject the drive again and close OSFMount.

Eject the drive using either the Windows Explorer or OSFMount and close OSFMount.

7. Now use DiskImager or a similar tool (see the previous backup section) and copy the

image that was mounted and modified in the previous steps back onto MOVI’s SD Card

or -- even safer -- onto any other SD Card that you may have that has 4GB or more

capacity.

Write the image back to the sd card. Make sure not to interrupt the process as this will

lead to a corrupt sd card and MOVI not working properly.

8. Re-insert the SD Card into MOVI by gently pressing the card in until it locks.

29 MOVITM User’s Manual Revision 1.10 -- February, 20th 2017

9. Connect speakers to MOVI as it is wise to listen to the messages during the update

process.

10. Do not connect any USB cable but power up the Arduino/MOVI combination using an

external power supply and listen to the status messages on the speakers. The update

should be performed automatically. The speakers will let you know when the process is

finished. It is very important not to unplug MOVI while the update is in progress. Partial

updates might make MOVI unusable. If this happens, restore the sd card from the

backup created in step 6.

11. Once the update finished, MOVI will automatically restart and work as usual (except

with a newer firmware). If you put several update files on the sd card, the process will

repeat for each valid update file.

12. In order to use the new features from the firmware, please don’t forget to download

and install the updated Arduino library as well.

Updating the SD Card. Method 2: Fast

1. Create a backup image of the SD Card as outlined in the backup section. While you will

be able to proceed without a backup image using this method, any mistake could make

your MOVI unusable.

2. Download BOOTICE:

http://www.softpedia.com/get/System/Boot-Manager-Disk/Bootice.shtml

3. Download the update file provided by Audeme’s website to a computer that has an

SD-card writer and the tools installed from step 1 and 2. Please make sure only to use

update files from our website. The files are called update-xzy.movi , with xzy being a

serial number that does not necessarily correspond to the version number advertised. If

you are not sure which version you need and/or you see multiple update files, it is safe to

download all of them and put all of them on the SD Card by following the steps outlined

below.

30 MOVITM User’s Manual Revision 1.10 -- February, 20th 2017

http://www.softpedia.com/get/System/Boot-Manager-Disk/Bootice.shtml

4. Unplug all power connections, as well as the USB cable from the Arduino and remove

MOVI’s SD Card by pressing on it gently before pulling it out. Leave the shield on the

Arduino.

5. Put the SD Card into the computer. Windows will assign a drive letter to it. But the

drive you see should not be accessed in any way as you might damage the card. (If you

are interested: Windows mistakenly assigns the first partition a drive letter and claims it

is the fourth partition). Keep in mind that MOVI's SD Cards are board specific and

replacing them is difficult. However, remember the assigned drive letter. In our image it’s

drive D:.

The Windows Explorer shows a disk after inserting MOVI’s SD card but this disk must

not be modified in any way! It contains system files vital to MOVI. Changing them will

lead to MOVI not working. Placing update files in there will not work either. However,

remember the driver letter, here D:.

6. Open BootICE – Select the MOVI card (3.7GB) (the drive letter from the previous step,

here D:) and click on Parts Manager.

31 MOVITM User’s Manual Revision 1.10 -- February, 20th 2017

7. Select the MOVI UPDATE partition and click Set Accessible.

8. Go back to the Windows Explorer and copy the MOVI update file and any other files

you might want to copy onto the drive (here D:) that should now appear empty (or show

files previously copied). It must not show the uImage and script.bin files seen earlier. If

you see them, redo step 7.

32 MOVITM User’s Manual Revision 1.10 -- February, 20th 2017

9. Go back to BOOTICE and select the MOVI BOOT partition and click Make Accessible to

restore the SD Card into it’s old state. This step is very important, otherwise MOVI will not

boot.

When done the partition should look like this:

33 MOVITM User’s Manual Revision 1.10 -- February, 20th 2017

10. Re-insert the SD Card into MOVI by gently pressing the card in until it locks.

11. Connect speakers to MOVI as it is wise to listen to the messages during the update

process.

12. Do not connect any USB cable but power up the Arduino/MOVI combination using an

external power supply and listen to the status messages on the speakers. The update

should be performed automatically. The speakers will let you know when the process is

finished. It is very important not to unplug MOVI while the update is in progress. Partial

updates might make MOVI unusable. If this happens, restore the SD Card from the

backup.

13. Once the update finished, MOVI will automatically restart and work as usual (except

with a newer firmware). If you put several update files on the card, the process will

repeat for each valid update file.

14. In order to use the new features from the firmware, please don’t forget to download

and install the updated Arduino library as well.

34 MOVITM User’s Manual Revision 1.10 -- February, 20th 2017

6. Further Information

Connect with other MOVI users on Audeme’s forum:

http://www.audeme.com/forum

There is a growing set of Instructables covering MOVI topics:

https://www.instructables.com/id/MOVI-Instructables/

For updates on what is going on with MOVI in general, we are maintaining a Facebook

page: https://www.facebook.com/asrshield

MOVI’s Arduino library is maintained on GitHub:

https://github.com/audeme/MOVIArduinoAPI.

If you are interested in history, the original Kickstarter page is here:

https://www.kickstarter.com/projects/310865303/movi-a-standalone-speech-recognizer-s

hield-for-ard

35 MOVITM User’s Manual Revision 1.10 -- February, 20th 2017

http://www.audeme.com/MOVI
https://www.instructables.com/id/MOVI-Instructables/
https://www.facebook.com/asrshield
https://github.com/audeme/MOVIArduinoAPI
https://www.kickstarter.com/projects/310865303/movi-a-standalone-speech-recognizer-shield-for-ard
https://www.kickstarter.com/projects/310865303/movi-a-standalone-speech-recognizer-shield-for-ard

7. FAQ

This FAQ is most likely outdated. The online version of the FAQ can be found on

Audeme’s website.

● I uploaded my sketch, now MOVI doesn’t react anymore when I type

commands on the Serial Monitor.

As with any device there are a number of ways to make MOVI or the underlying

Arduino freeze. The three most common causes are these:

- MOVI is not connected to an external power supply

- The sketch uses too much SRAM due to too many and too long sentences.

This can be fixed by putting as many strings as possible into flash memory,

as is described in Chapter 4 .

- A command is sent to MOVI in every loop() cycle.

Without exception, sending a command to MOVI inside the loop() function

should only happen after catching a certain event with poll(). The only

function that is save to call without an if -statement in front is poll(). Also

note, that poll() returns 0 for no event. Sending any command to MOVI after

no-event has the same effect.

In any case, if MOVI is hung up in this way, the easiest way to get MOVI back to life

is to load one of the example programs onto the Arduino and then reset MOVI

while connected to an external power supply.

● MOVI doesn’t seem to work with my children, what’s wrong?

MOVI’s acoustic models have been trained only on adults as training with children

is inherently difficult. Therefore, MOVI works best with people over 12 years old.

● Is MOVI available for Rasberry PI?

MOVI is not officially supported on the Rasberry PI. However, makers have

created solutions that allow to connect MOVI with the Rasberry PI. See also:

https://www.instructables.com/id/Untethered-Speech-Dialog-Using-MOVI-With-th

e-Rasbe/

36 MOVITM User’s Manual Revision 1.10 -- February, 20th 2017

http://www.audeme.com/MOVI
https://www.instructables.com/id/Untethered-Speech-Dialog-Using-MOVI-With-the-Rasbe/
https://www.instructables.com/id/Untethered-Speech-Dialog-Using-MOVI-With-the-Rasbe/

● Does MOVI really need an external power supply? Sometimes it works over

USB.

Lucky you! Don’t rely on it. See first question.

● Can I operate MOVI on batteries instead of an AC adapter?

Yes. We have successfully operated MOVI on an Arduino Uno using a 9V block

battery (or two in parallel for longer operation). AAs and AAAs work too, as long as

enough of them are being used. Depending on the type, the voltages of AA and

AAA batteries range from 1.2V to 1.5V per battery. Also, voltage might drop over

time. Therefore we recommend using at least 5 batteries of this type, better 6.

● How do I train other languages and accents?

As of MOVI Firmware 1.1, MOVI supports the configuration of the speech

synthesizer to other languages. See Appendix E for more information.

Additionally, MOVI support the use of open source language models to change the

language of the speech recognizer. See Appendix F for more information. Also

check out the following Instructables

for Spanish:

https://www.instructables.com/id/Connection-Less-Spanish-Speech-Recognition-a

nd-Syn/

for German:

https://www.instructables.com/id/Connection-less-German-Speech-Recognition-a

nd-Synt/

37 MOVITM User’s Manual Revision 1.10 -- February, 20th 2017

https://www.instructables.com/id/Connection-Less-Spanish-Speech-Recognition-and-Syn/
https://www.instructables.com/id/Connection-Less-Spanish-Speech-Recognition-and-Syn/
https://www.instructables.com/id/Connection-less-German-Speech-Recognition-and-Synt/
https://www.instructables.com/id/Connection-less-German-Speech-Recognition-and-Synt/

Appendix

A. Compatibility

We developed the MOVI shield using an original Arduino Uno R3 and an Arduino

Mega2560 R3. Consequently, we recommend you get one of these boards if you don’t

already have an Arduino. However, we also tested MOVI with other Arduino and

compatible boards.

General Compatibility

With exceptions, MOVI is generally compatible with any board that has an Arduino

UNO-compatible header. This sounds easier than it is, as the Arduino UNO already comes

with two different set of headers. Figure 1 below shows the original UNO on the left and

the R3 version on the right.

 No IOREF IOREF

Figure 2. Arduino UNO header without (left) and with (right) IOREF PIN.

Older versions of the Arduino UNO contain no IOREF pin (compare bottom header to the

right of the RESET line). In order to be compatible with both versions, we added Jumper 1

38 MOVITM User’s Manual Revision 1.10 -- February, 20th 2017

(see Figure 1). More on it later. For now it is important to know that by default, on an

Arduino UNO R3 or an Arduino MEGA2560 R3, the MOVI shield will use the following pins:

● VIN and GND — to draw power

● D10 and D11 — for serial communication

● IOREF — to determine the voltage for serial communication

Making MOVI compatible with other boards completely depends on the location and

functionality provided by these 5 pins.

In detail:

● Power supply: There must be enough voltage and current on VIN to power the

MOVI shield (5.20–16 V). In most cases, this requires an external power supply as

USB power easily drops below 5V.

● D10 and D11 must be available for serial communication. On boards with ATMEGA

processor (e.g. UNO, MEGA, Leonardo, Duemilanova) this is the case. On boards

with Intel (e.g. Edison, Galileo) or ARM processor (e.g. Due) , serial communication

needs to be rewired using Jumper 2 and 3 (see Figure 1).

● The IOREF pin indicates the voltage used for serial communication. In older

boards, this voltage was always 5 V and there was no need for IOREF. Therefore,

we recommend to set J1 on an older 5 V board without IOREF pin. Caution: J1

hardwires the 5 V pin to IOREF. Therefore, setting J1 on a 3.3 V board will

destroy the board! If a board has gray headers it is a 3.3 V board. If it has black

headers it might be either a 3.3 V board or a 5 V board.

In the following, we will detail the setting of the jumpers and the power supply needs for

the boards that we tested.

Uno R1 and R2, MEGA2560 R1 and R2, Leonardo R1 and R2

Close Jumper 1, 2 and 3. Use external power supply within the Arduino-allowed range but

at least 5.20 V.

Uno R3, Mega2560 R3, Leonardo R3

39 MOVITM User’s Manual Revision 1.10 -- February, 20th 2017

Keep Jumper 1 open. Close Jumper 2 and 3. Use external power supply within the

Arduino-allowed range but at least 5.20 V.

Freeduino

Freeduino is a free clone and is compatible to Arduino Duemilanova. Close Jumper 1, 2,

and 3. Set Freeduino’s power supply jumper to use the external power supply (that you

need to connect). Use external power supply within the Freeduino-allowed range but at

least 5.20 V.

Olimexino-328

Olimexino-328 is compatible to Arduino Duemilanova. Switch Olimexino’s voltage

selection switch to 5V and close MOVI’s Jumper 1, 2, and 3. Since the Olimexino does not

have an IOREF pin, we do not recommend the 3.3 V operation. Also, be warned that

setting the switch to 3.3 V and closing Jumper 1 may destroy the Olimexino board.

Therefore set the switch to 5 V before powering the board. Use external power supply

within the Olimexino-allowed range but at least 5.20 V.

Diavolino

Diavolino is essentially a Freeduino. However, by default the board comes without

external power supply support. Solder the external power supply support on the board

and use it to power the board. Close MOVI Jumpers 1, 2, and 3. Use external power

supply within the Diavolino-allowed range but at least 5.20 V.

Arduino Yun

The Arduino Yun does not support an external power supply. Also, the Ethernet plug

makes it hard to mount MOVI in a mechanically stable fashion. To solve the latter

problem, we therefore recommend to use a (smaller) blank shield between the Arduino

Yun and the MOVI shield. To solve the power supply problem, connect an external power

supply with 5.10V–6 V to a GND header pin (-) and the VIN pin (+). Leave Jumper 1 open

but close Jumper 2 and 3.

Arduino Due

40 MOVITM User’s Manual Revision 1.10 -- February, 20th 2017

The Arduino Due is a 3.3 V board with an ARM chip that does not support serial

communication on pins D10 and D11. In order to operate MOVI with it is important to

keep Jumper 1 open and also open Jumpers 2 and 3. Closing Jumper 1 will destroy the

Due board! Connect the left side of MOVI's TX jumper (Jumper 2) to RX1 (D19) and the

left side of MOVI's RX jumper (Jumper 3) to TX1 (D18) of the Arduino Due board using

jumper wires. The left side is the pin that is further away from the Arduino headers and

the microphone (MIC1). Use an external power supply within the Arduino Due allowed

range but at least 5.20 V. To see Serial Console messages on the Due connect the

"Programming" USB to your computer while in the Arduino IDE.

Arduino Zero, M0, Zero Pro and M0 Pro

The Arduino Zero, Zero Pro, M0 and M0 Pro were software-incompatible with MOVI in the

past but as of the latest version of the Arduin IDE, work with MOVI Library 1.12 or later.

We will refer to all four models as Zero. The Arduino Zero is a 3.3 V board with an ARM

chip that does not support serial communication on pins D10 and D11. In order to

operate MOVI with it is important to keep Jumper 1 open and also open Jumpers 2 and

3. Closing Jumper 1 will destroy the Zero board! Connect the left side of MOVI's TX

jumper (Jumper 2) to RX (D0) and the left side of MOVI's RX jumper (Jumper 3) to TX (D1)

of the Arduino Zero board using jumper wires. The left side is the pin that is further away

from the Arduino headers and the microphone (MIC1). Use an external power supply

within the Arduino Zero allowed range but at least 5.20 V. To see Serial Console messages

on the Zero connect the "Programming" USB to your computer while in the Arduino IDE.

Microchip uc32, Microchip WF32, Microchip Wi-Fire and similar PIC32 boards

Using the Arduino IDE v1.8.1 or higher, MOVI library v1.12 or higher and Microchips

driver software chipKITⓇ by chipKIT v1.3.1 or higher, Microchip boards with PIC32

architecture that have Arduino-compatible headers can be used with MOVI. In order to

operate MOVI with them it is important to keep Jumper 1 open as most of the boards

are 3.3V. Note that older versions of the IDE, the MOVI library or the driver software are

not compatible. Please refer to Microchip’s documentation on how to install the chipKIT

driver software into your Arduino IDE.

41 MOVITM User’s Manual Revision 1.10 -- February, 20th 2017

Intel Galileo Gen 2

The Intel Galileo Gen 2 is a 5 V board with IOREF pin. Unfortunately, Intel does not

support serial communication on pins D10 and D11. Keep Jumpers 1, 2 and 3 open.

Connect the left side of the MOVI's TX jumper (Jumper 2) to RX (D0) and the left side of

MOVI's RX jumper (Jumper 3) to TX (D1) of the Intel Galileo Gen 2 board using jumper

wires. The left side is the pin that is further away from the Arduino headers and the

microphone (MIC1). Use an external power supply within the Intel Galileo allowed range

but at least 5.20 V.

Intel Edison

The Intel Edison can operate shields at 3.3 V and 5 V, depending on a jumper setting on

the Edison board. Since the boards supports the IOREF pin, both settings are equally valid

as long as MOVI Jumper 1 is open. Warning: Setting the Edison voltage selection pin

to 5 V and closing MOVI’s Jumper 1 might destroy the Edison board! Unfortunately,

Intel does not support serial communication on pins D10 and D11. Therefore keep

Jumpers 2 and 3 open as well. Connect the left side of the MOVI's TX jumper (Jumper 2)

to RX (D0) and the left side of MOVI's RX jumper (Jumper 3) to TX (D1) of the Intel Edison

board using jumper wires. The left side is the pin that is further away from the Arduino

headers and the microphone (MIC1). Additionally, when we tested the Intel Edison, the

VIN pin did not provide enough power to the MOVI shield. If you connected MOVI and

you see the shield is not booting (no light on red LED after a couple seconds), connect an

external power supply with 5.10V–6 V to a GND header pin (-) and the VIN pin (+).

Boards our users have been able to get to work with MOVI

There is a tutorial on how to connect and run MOVI with Rasberry PI at

http://www.instructables.com/id/Untethered-Speech-Dialog-Using-MOVI-With-the-Rasbe/

Our users also have reported success with the Huzzah ESP8266 board:

http://www.audeme.com/forum.html#/20160115/huzzah-esp8266-5149103/

Boards we have not been able to get to work with MOVI

42 MOVITM User’s Manual Revision 1.10 -- February, 20th 2017

http://www.instructables.com/id/Untethered-Speech-Dialog-Using-MOVI-With-the-Rasbe/
http://www.audeme.com/forum.html#/20160115/huzzah-esp8266-5149103/

Unfortunately not all Arduino-compatibles are the same. Therefore, some boards might

never work with MOVI and some others might work in the future. In general, boards that

do not have any shield headers or where the headers are not compatible with the UNO

will not work. For example, the Arduino Pro (and clones) has headers that are not

compatible with MOVI, although the board might work with rewiring. The Intel Galileo

Gen1 uses a 5 V power supply that does not supply enough voltage for MOVI.

43 MOVITM User’s Manual Revision 1.10 -- February, 20th 2017

B. MOVIShield Library Reference

The following describes the functions made available through the MOVIShield library,

sometimes referred to as MOVI API (Application Programming Interface). The library and

the examples are open source and hoped to be most self explanatory. Also, individual

parameters or method names may change be added or become obsolete based on the

open-source community process. We therefore provide this section only as a starting

point.

The methods in the library are divided into several categories, depending on when they

can be called in the Arduino execution process and also their potential frequency of use.

Methods that must be used in setup()

MOVI constructors

MOVI()

Construct a MOVI object with default configuration.

MOVI(bool debugonoff)

Construct a MOVI object with optional Serial Console interaction.

MOVI(bool debugonoff, int rx, int tx)

Construct a MOVI object with different communication pins and optional Serial Console

interaction. This constructor only works on AVR architecture CPU. Other architectures

ignore the rx and tx parameters and use whatever pins are designated to Serial1

(see also explanation in Appendix A).

MOVI(bool debugonoff, HardwareSerial *hs)

Construct a MOVI object with an existing HardwareSerial (eg. Arduino Mega). If you use

this constructor, you need calls the begin method with a bitrate before calling MOVI’s

init() method. This is an advanced method mostly for non-Arduino boards.

44 MOVITM User’s Manual Revision 1.10 -- February, 20th 2017

Initialization methods

init()

This init method waits for MOVI to be booted and resets some settings. If the recognizer

had been stopped with stopDialog() it is restarted. If you use HardwareSerial, this

method assumes, the connection has been initialized and started with

HardwareSerial::begin() .

init(bool waitformovi)

This init method only initializes the API and doesn't wait for MOVI to be ready if the

parameter is false.

bool isReady()

This method can be used to determine if MOVI is ready to receive commands, e.  g. when

MOVI has been initialized with init(false).

bool addSentence(String sentence)

This method adds a sentence to the training set. Sentences must not contain any

punctuation or numbers. Everything must be spelled out. No special characters, umlauts

or accents. Uppercase or lowercase does not matter. This function can also be used with

the F() macro. See: http://playground.arduino.cc/Learning/Memory

bool train()

This method checks if the training set contains new sentences since the last training. If so,

it trains all sentences added in this MOVI instance. Once training is performed, no more

sentences can be added and training cannot be invoked again in the same instance.

callSign(String callsign)

This method sets the callsign to the parameter given. If the callsign has previously been

set to the same value, nothing happens. Only one call sign can be trained per MOVI

instance and callsign must be one word and cannot contain any special characters or

numbers. The callsign can be the empty string, however. In this case, MOVI will react to

any noise above the threshold (clapper mode).

45 MOVITM User’s Manual Revision 1.10 -- February, 20th 2017

http://playground.arduino.cc/Learning/Memory

Methods that are typically used in setup() but can also be used in loop()

setVolume(int volume)

Sets the output volume for the speaker port. The value for volume is expected to be

between 0 (mute) and 100 (full). The default is 100. Values between 0 and 100 may be set

to approximated values due to internal technical details of the sound card. For example,

setVolume(20) may result in a volume of 16.

setVoiceGender(bool female)

This method sets the gender of the speech synthesizer. True being female. False being

male.

setThreshold(int threshold)

Sets the noise threshold of the recognizer. Values vary between 2 and 95. Factory default

is 5. Depending on the noise of the environment MOVI may have difficulty distinguishing

between noise and speech and may wait very long for a sentence to end. Increasing the

noise threshold will help. Typically a value of 15 is good for somewhat noisy

environments and a value of 30 for very noisy environments. Ultimately, experimentation

is the only way to determine a good noise threshold.

responses(bool on)

Turns the spoken responses as a result of recognition events (e.g. silence or noise) on or

off.

welcomeMessage(bool on)

Turns off the spoken welcome message indicating the call sign.

beeps(bool on)

Turns the recognition beeps on or off.

setSynthesizer(int synth)

Sets MOVI’s speech synthesizer to one of SYNTH_ESPEAK or SYNTH_PICO . Implemented

as of firmware 1.10 older firmware versions ignore the command.

46 MOVITM User’s Manual Revision 1.10 -- February, 20th 2017

setSynthesizer(int synth, String commandline)

Sets MOVI’s speech synthesizer to one of SYNTH_ESPEAK or SYNTH_PICO with the given

command line parameters directly passed to them. Implemented as of firmware 1.10

older firmware versions ignore the command. See the espeak and pico manpages for

suitable parameters:

http://espeak.sourceforge.net/commands.html

http://topics-of-interest.com/man1/pico2wave

Methods that are typically used in loop()

signed int poll()

This method is the most important method. It is called in loop() to get an event from

the recognizer. 0 stands for no event. A positive number denotes a sentence number. A

negative value defines an event number. Event numbers are the negatives of the

numbers displayed on the serial monitor. For example: MOVIEvent[200] would return

-200. The possible events are listed in Appendix D.

String getResult()

Gets the result string of an event. For example: MOVIEvent[201]: LET THERE LIGHT

results in "LET THERE BE LIGHT\n". The resulting string might need trimming for

comparison to other strings. The resulting string is uppercase and does not contain any

numbers, punctuation or special characters.

say(String sentence)

Uses the internal synthesizer to make MOVI speak the sentence given as parameter using

the speech synthesizer. This function can also be used with the F() macro. See:

http://playground.arduino.cc/Learning/Memory

ask()

Directly listen without requiring a callsign.

ask(String question)

This method instructs MOVI to speak the sentence given as first parameter using the

synthesizer and then directly listen without requiring a callsign. A programming demo of

47 MOVITM User’s Manual Revision 1.10 -- February, 20th 2017

http://espeak.sourceforge.net/commands.html
http://topics-of-interest.com/man1/pico2wave
http://playground.arduino.cc/Learning/Memory

how this function is used can be found in the Eliza library example. This function can also

be used with the F() macro. See: http://playground.arduino.cc/Learning/Memory

password(String question, String passkey)

Similar to ask, this methods makes MOVI speak the sentence given as first parameter

using the synthesizer. Then MOVI's password function is used to query for a password.

The API compares the passkey with the password and returns either PASSWORD_REJECT

or PASSWORD_ACCEPT as an event. The passkey is not transferred to or saved on the

MOVI board. While all password attempts are passed over the serial communication, the

only board that knows the right answer is the Arduino. It compares the password

attempts and sends the appropriate event. IMPORTANT: The passkey must consist only

of words contained in the trained sentences and must not contain digits or other

non-letter characters except one space between the words. A demo of how this function

is used can be found in the AlarmPassword library example. The first parameter of this

function can also be used with the F() macro. See:

http://playground.arduino.cc/Learning/Memory

Infrequently used advanced commands

pause()

Pauses the recognizer until the an upause() , ask() , say() or password() command.

Implemented as of firmware 1.10 older firmware versions ignore the command.

unpause()

Silently interrupts the a pause after pause() . Implemented as of firmware 1.10 older

firmware versions ignore the command.

finish()

Finishes up the currently executing sentence recognition. The result is returned

normally.Implemented as of firmware 1.10 older firmware versions ignore the command.

abort()

Abort a play() or say() command immediately. Implemented as of firmware 1.10 older

firmware versions ignore the command.

48 MOVITM User’s Manual Revision 1.10 -- February, 20th 2017

http://playground.arduino.cc/Learning/Memory
http://playground.arduino.cc/Learning/Memory

play(String filename)

Play an audio file located on the update partition of the SD card. Implemented as of

firmware 1.10 older firmware versions ignore the command. Please read the

instructions in Appendix E first, before using this command.

sendCommand(String command, String parameter)

Sends a command manually to MOVI. This allows to send any command to MOVI that is

defined in the low level interface (see also subsequent section).

float getFirmwareVersion()

Returns MOVI's firmware version.

float getHardwareVersion()

Returns MOVI's board revision.

float getAPIVersion()

Returns the version of the library.

stopDialog()

Stops the recognizer and synthesizer without powering down the MOVI hardware.

restartDialog()

Restarts the recognizer and synthesizer manually (e.g. after a stopDialog).

factoryDefault()

Resets MOVI to factory default. This method should only be used in setup() and only if

needed. All trained sentences and callsigns are untrained. The preferable method for a

factory reset is to use the serial monitor or a long press on the MOVI’s reset button.

~MOVI()

Destructs the MOVI object. As of today, frankly, we haven’t found any scenario in which

this method would ever be called.

49 MOVITM User’s Manual Revision 1.10 -- February, 20th 2017

C. The Low Level Interface

The MOVIShield library is an easier way to program MOVI, especially when used by

modifying the examples that come with it. However, in order to have access to the full

functionality of the board, including some useful debugging features, it will be necessary

to use the low level interface from time to time. The low level interface is accessible

through the Serial Console of the Arduino IDE when a MOVI object is constructed using

the value true for the debug parameter. Optionally, we included a low level interface

sketch in the library examples. The sketch can be run without the MOVI library. Figure 3

shows a screenshot.

Figure 3. Using the Low Level Interface.

50 MOVITM User’s Manual Revision 1.10 -- February, 20th 2017

Low level commands are all uppercase and the responses are MOVIEvents. Most of the

commands are self descriptive.

Note: When using the USB host capabilities of the Arduino Leonardo, invoking the Serial

Console may take some extra seconds as the board needs to reconfigure its serial

interface. To see Serial Console messages on the Due connect the "Programming" USB to

your computer while in the Arduino IDE.

HELP

Shows the list and usage of the manually-usable low-level commands.

SAY <sentence>

Speak the sentence through the synthesizer. Sentences can include numbers and

punctuation. Corresponds to the method of the same name in the API.

PLAY <soundfile>

Play a sound file located on the update partition. Available as of firmware 1.10. Please

read the instructions in Appendix E first, before using this command.

ABORT

Abort the currently executing SAY or PLAY command. Available as of firmware 1.10.

FINISH

Finish up the currently executing sentence recognition. Available as of firmware 1.10.

PAUSE

Pauses the recognizer until an UNPAUSE, PLAY, SAY, PASSWORD, ASK, STOP,

RESTART, TRAIN, CALLSIGN or FACTORY command. Available as of firmware 1.10.

UNPAUSE

Unpauses the recognizer after a PAUSE command. Available as of firmware 1.10.

SHUTDOWN

Shuts the underlying Linux system on the shield down.

ABOUT

Returns copyright messages as shield event.

51 MOVITM User’s Manual Revision 1.10 -- February, 20th 2017

VERSION

Returns the version of this software.

HWVERSION

Returns the version of board circuit.

PING

Returns a “pong” shield event (or not, if the shield is not properly working)

VOLUME <percentage>

Sets the output volume between 0-100 and returns the new volume as shield event.

Corresponds to the method in the API.

STOP

Disables all recognition and ignores all SAY commands until "RESTART". Corresponds to

stopDialog() in the API.

RESTART

Can be used anytime to reset the speech recognition and the speech synthesizer. No

retraining is performed. Corresponds to restartDialog() in the API.

FACTORY

Reset the shield to factory settings. Trained vocabulary, call-signs and settings are reset

as well. Corresponds to the API method as well as the long-press of the reset button.

ASK

Perform a single recognition cycle without call sign.

PASSWORD

Perform a single recognition cycle without call sign. DO NOT correct the raw results.

FEMALE

Switch the synthesizer to female voice

MALE

Switch the synthesizer to male voice (default)

52 MOVITM User’s Manual Revision 1.10 -- February, 20th 2017

SETSYNTH "ESPEAK"|"PICO" [<params>]

Sets the speech synthesizer to either espeak or SVOX pico. The optional parameters

configure the command line usage of either of these synthesizers. Available as of

firmware 1.10. See the espeak and pico manpages for suitable parameters:

http://espeak.sourceforge.net/commands.html

http://topics-of-interest.com/man1/pico2wave

VOCABULARY

Output the trained sentences to the serial console

CALLSIGN [<word>]

Change the call sign to a new word. If the word is empty, any sound activity will trigger a

recognition cycle.

TRAIN

Manually train the recognizer to recognize the sentences. System will prompt. Sentences

are separated by \n and end with ' # '. '@ ' aborts. This method is inherently not thread safe

and should only be used manually. This command is intended to be used for debugging

and to save memory when training a large set of sentences.

SYSTEMMESSAGES <"ON"|"OFF">

Toggle synthesizer messages like "System is being shutdown" or "System is booting".

There is no corresponding API method as this method will not reset with a new MOVI

object.

RESPONSES <"ON"|"OFF">

Toggle synthesizer responses like "I did not understand you". Corresponds to the API

method.

BEEPS <"ON"|"OFF">

Toggle recognition cycle beeps. Corresponds to the API method.

WELCOMEMESSAGE <"ON"|"OFF">

Toggle synthesized welcome message and call sign. Corresponds to the API method.

53 MOVITM User’s Manual Revision 1.10 -- February, 20th 2017

http://espeak.sourceforge.net/commands.html
http://topics-of-interest.com/man1/pico2wave

THRESHOLD <percentage>

Set the sound activity threshold. Valid percentages are between 2 and 95. Factory default

is 5. This method exactly corresponds with the API method. See description there for

further explanation.

MICDEBUG <"ON"|"OFF">

Toggles microphone debug mode. RESTART required for change to take effect. In this

mode all microphone activity above threshold is echoed. This methods is very valuable

for debugging environmental noise or other microphone issues, especially in connection

with THRESHOLD.

MEM

Display memory usage. Useful for debugging potential memory overflows in extensive

training scenarios with hundreds of sentences.

INIT

This function is used in the MOVI API when a new MOVI object is instantiated. It resets

certain settings and restarts the recognizer if stopped. It returns shield event 101

containing versioning information.

NEWSENTENCES

This command is used in the MOVI API to declare a new set of to-be-trained sentences.

ADDSENTENCE <sentence>

This command is used in the MOVI API to add a sentence to the current set of

to-be-trained sentences.

TRAINSENTENCES

This command is used in the MOVI API to invoke training the set of to-be-trained

sentences. This command does nothing if the set of trained sentences and the set of

to-be-trained sentences are equal.

54 MOVITM User’s Manual Revision 1.10 -- February, 20th 2017

D. MOVI Event Categories

MOVI returns events over the serial communication line with 9600 bps as a result of

either the execution of a command or extrinsic or intrinsic board events (e. g.shutdown

or callsign detected).

The format of the events is

MOVIEvent[<eventno>]: <textual description>

The textual description is user readable and can change with version to version. The

eventno is meant to be interpreted by the machine. poll() will return 0 for no event, a

positive number when a sentence was recognized and -eventno for an event.

The events itself are grouped into the following categories:

Events in the 0–99 range are to be ignored by the library or programs using MOVI as they

constitute debugging output readable only to the user.

Event 100 is pong.

Events 101–110 are defined for versioning checks of the device.

Events 111–199 are defined for other status messages.

Event 200 is callsign detected.

Events in the 201–299 are responses to commands.

Events in the 400 range denote errors.

Events in the 500 range denote non-speech states.

The most frequently used events are defined with #define macros in the MOVI library for

easy use with the poll() command. These are:

0 (SHIELD_IDLE) Not an actual MOVI event, returned by poll() when nothing happened.

140 (BEGIN_LISTEN) MOVI starts to listen (after call sign)

141 (END_LISTEN) MOVI stops listening (after timeout or as per energy detector)

150 (BEGIN_SAY) MOVI starts speaking in the synthesizer

151 (END_SAY) MOVI stops speaking

200 (CALLSIGN_DETECTED) Call sign was detected

201 (RAW_WORDS) This event contains the raw words (to be returned with getResult())

55 MOVITM User’s Manual Revision 1.10 -- February, 20th 2017

204 (PASSWORD_ACCEPT) Password accepted (generated by library after password() call)

404 (PASSWORD REJECT) Password rejected (generated by library after password() call)

530 (NOISE_ALARM) Too much noise.

501 (SILENCE) Empty sentence (silence or noise).

502 (UNKNOWN_SENTENCE) Unmatchable result. This happens when two or more trained

sentences could equally by matched to the recognition result.

56 MOVITM User’s Manual Revision 1.10 -- February, 20th 2017

E. Commonly Used Speech Synthesizer Commands

As of MOVI firmware 1.1, two synthesizers are built in with MOVI: espeak and SVOX PICO.

Furthermore, both synthesizers can be configured via their command line parameters

using MOVI's setSynthesizer() command. MOVI library 1.10 and higher comes with an

example beginner/SynthesizerControl that illustrates the switching between the

synthesizers and some of the configuration options discussed here.

The basic command recognizer.setSynthesizer(SYNTH_PICO) switches to SVOX

PICO with a British English female voice and

recognizer.setSynthesizer(SYNTH_ESPEAK) switches back to the default

synthesizer voice.

SVOX Pico is smoother than espeak but is only available as female voice and the only

parameter to tune is the language spoken. The languages available are 'en-US ', 'en-GB '

(default), ' de-DE ', 'es-ES ', 'fr-FR ', and 'it-IT '.

See also: http://topics-of-interest.com/man1/pico2wave

For example setting SVOX PICO to an american accent is achieved by this command:

recognizer.setSynthesizer(SYNTH_PICO,"-l=en-US")

Note that for some applications, especially technical usages (eg., involving many

numbers, coordinates, times) this synthesizer might be too ‘mumbly’. It’s best to use it

for natural language, such as full sentences in a dialog.

Espeak (the default synthesizer) allows female and male voices and many more

languages. It also allows for configuration of the pitch and speaking rate. It is therefore

better suited for fine-tuning when data is spoken rather than straightforward sentences

from a dialog. Espeak’s output is perceived as more ‘robotic’ though.

A full list of useful parameters can be found in espeak’s source repository:

http://espeak.sourceforge.net/commands.html

The following are some examples:

57 MOVITM User’s Manual Revision 1.10 -- February, 20th 2017

http://topics-of-interest.com/man1/pico2wave
http://espeak.sourceforge.net/commands.html

-v sets a voice in espeak, for example

recognizer.setSynthesizer(SYNTH_ESPEAK,"-v+whisper")

makes espeak use a whispering voice.

-p sets the pitch, for example

recognizer.setSynthesizer(SYNTH_ESPEAK,"-p85 -vf4")

sets a female voice and a higher pitch, resulting in speech that sounds like comping from

a child.

-s sets the speaking rate in words per minute. For example

recognizer.setSynthesizer(SYNTH_ESPEAK,"-s 300")

makes espeak talk extremely fast while

recognizer.setSynthesizer(SYNTH_ESPEAK,"-s 80")

makes it speak boringly slow.

A final remark: MOVI does not check the syntax or the validity of the parameters passed.

If the parameters passed to either espeak or SVOX PICO are not recognized by the

respected synthesizer, it is very likely that the parameters are either ignored, thus

reverting to defaults, or the synthesizer will not output any speech at all. If that happens,

double check the parameters for typos and other errors. Don’t panic: Playing around with

the parameters cannot create permanent damage to MOVI. Restarting MOVI or

performing a factory reset will allows revert MOVI back to the default synthesizer

settings.

58 MOVITM User’s Manual Revision 1.10 -- February, 20th 2017

F. Special Files on the SD card

As of MOVITM 1.1, the firmware will read some system files from the SD card that allow to

configure additional advanced features. These files must be placed in the root directory

‘/ ’ of the MOVI UPDATE partition (the 4th partition on the sdcard, which is formatted as

FAT). Please follow the instructions outlined in Chapter 5 (Updating MOVI)

regarding unplugging and handling the SD card. If you feel uncomfortable with the

instructions given here, it’s better to leave it alone and become more familiar with other

MOVI features first.

Playing sound files

MOVI 1.1 supports playing sound files. This is done using the PLAY command that works

in the same way as the SAY command. MOVI supports most uncompressed sound

formats, such as WAV, AIFF, VOC, SND, and AU. Having said that, there is no guarantee

that a certain file will play as sound formats are highly diverse. Trial and error prevails.

The sound files need to be placed on the update partition and the low-level command

PLAY will take any path relative to the root directory of that update partition. For

example, PLAY test.wav will play the file test.wav on the update partition. PLAY

test/1.wav will play the file 1.wav located in the directory test on the update partition.

The PLAY command is also integrated into the library as play(String filename) .

Playing a sound can be cancelled anytime with the low-level command ABORT or

abort() in the library. The MOVI library includes an example sketch for the use of the

play() command.

Changing the communication bit rate

First a warning: Do not change the communication bit rate unless you absolutely know

what you are doing. For example, if you are using SoftwareSerial (the default), you should

absolutely not increase MOVI’s bitrate. In other words on a traditional Arduino UNO,

Leonardo, Duemillanove, FreeDuino, etc. there is no reason whatsoever to mess with the

bitrate.

59 MOVITM User’s Manual Revision 1.10 -- February, 20th 2017

However, if you use HardwareSerial on an Arduino MEGA and/or a non-Arduino board

with hardware-supported serial connections, such as the Rasberry PI or the Huzzah

board, it can sometimes make sense to change the bitrate in order to get marginal

efficiency gains.

In order to change the communication bit rate between the MOVI shield and the main

board, follow the instructions outlined in Chapter 5 (Updating MOVI) regarding

unplugging and handling the SD card.

Place a file named ‘bitrate’ in the root directory of the MOVI UPDATE partition on the SD

card. The file should only contain a single number (no \n) containing the new bit rate

without comma or dot. The number is not checked in any way, so please double check

with your board that this communication speed is OK. Today’s hardware UARTs pretty

much all support 115200 bits per second. Therefore, this is probably your best guess.

MOVI will then boot up and initialize with the new bitrate. The command internally given

to MOVI is equivalent to the Unix command:

stty -echo -F /dev/ttyUART1 $BITRATE

With BITRATE being the number specified in the file. Expect an unresponsive MOVI

board or garbage on the console in case the number is guessed wrongly. MOVI can be

easily reset to it’s default bit rate of 9600 bits per second by either deleting the file from

the SD card or by loading the factory defaults (e.g. by long-pressing the button or using

the respective library function).

If you use the MOVI library, make sure to use the constructor that specifies the

HardwareSerial. If you must change the bitrate (e.g. decrease it) for SoftwareSerial,

change the number specified as ARDUINO_BITRATE in MOVIShield.h to match the

number in the file.

Voxforge.org models

MOVITM 1.1 supports the change of the speech recognition models by allowing to place

new model files from VoxForge.org on the SD card. VoxForge is an effort to collect

transcribed speech for use with open source speech recognition engines . The site

60 MOVITM User’s Manual Revision 1.10 -- February, 20th 2017

http://www.voxforge.org/

collects audio files from it’s users and then 'compiles' them into acoustic models for

use with speech recognition engines. MOVI works with speech recognition models

that were compiled for CMU Sphinx that fulfill the specification in this section.

Please note that speech recognition model portability is an active area of research

and we cannot give support for models that don’t work. Trial and error and

hopefully success at some point is the only way to find out. As of the writing of this

document, we were able to successfully use a German model and a

Mexican-Spanish one, which we make available as ‘language packs’ on

Audeme.com.

MOVI needs both an acoustic model as well as a phonetization model. Using those two

and the trained sentences, MOVI builds it’s own language models.

The acoustic model must be compliant with CMU Sphinx and contain the following files:

feat.params , mdef , means , mixture_weights , transition_matrices , variances .

The phonetization model must be called model.fst, reside in the same directory as the

acoustic model, and be compatible with phonetisaurus. The phonetization model must

contain words and their respective pronunciation in a dictionary in such as a way that the

pronunciation result strings can be extracted with the Python regular expression code:

exp=re.compile(r'(?P<precision>\d+\.\d+)\t'+r'(?P<pronounciation>.*)'

)

for precision, pronounc in exp.findall(output):

result.append(pronounc)

This format is intentionally made compatible with pronunciation models supported by

Jasper.

In order to change the speech recognition model on the MOVI shield, follow the

instructions outlined in Chapter 5 (Updating MOVI) regarding unplugging and

handling the SD card. Place all files into a directory on the MOVI UPDATE partition of the

SD card and create a file named ‘modeldir’ in the root directory of the MOVI UPDATE

partition on the SD card. The file should only contain a single line (no \n) containing the

direcory name relative to the MOVI UPDATE partition (do not include MOVI UPDATE/).

61 MOVITM User’s Manual Revision 1.10 -- February, 20th 2017

http://jasperproject.github.io/

When you boot MOVI again, you should hear a message telling you about “using

alternative models” and/or an error message saying that files are missing. The alternative

models will only be used for the sentence recognition. The callsign recognition needs to

stay English. Although we recommend finding a callsign that’s language independent

(e.g., ‘Arduino’).

Caution: alternative models usually make MOVI start up and train more slowly.

Please note: MOVI does not support umlauts or accents (tildes) or any other special

symbols. You need to find the closest match with plain 7-bit ASCII symbols.

MOVI can be easily reset to it’s default language model by either deleting the file modeldir

from the SD card or by loading the factory defaults (e.g. by long-pressing the button or

using the respective library function).

62 MOVITM User’s Manual Revision 1.10 -- February, 20th 2017

G. Terms and Conditions

These Terms and Conditions (the “Agreement”) shall govern the rights and obligations of the parties

with respect to the sale of products from Audeme LLC, a California limited liability company (the

“Seller”), to a party placing an order from Seller (the “Buyer”), as set forth in the attached invoice. Buyer,

by accepting delivery of the products, accepts and agrees to abide by this Agreement.

No contractual relationship between Seller and Buyer shall arise until such time as Buyer has placed an

order that has been accepted by Seller.

1. Taxes. Prices on the products are exclusive of all city, state, and federal excise taxes, including,

without limitation, taxes on manufacture, sales, receipts, gross income, occupation, use and similar

taxes. Wherever applicable, any tax or taxes will be added to the invoice as a separate charge to be

paid by the Buyer.

2. LIMITED WARRANTY. SELLER WARRANTS THE PRODUCTS FOR A PERIOD OF THIRTY (90) DAYS

FOLLOWING DELIVERY. SELLER’S RESPONSIBILITY UNDER THIS WARRANTY IS LIMITED TO REPLACING

DEFECTIVE PRODUCTS. IF SELLER IS UNABLE TO REPLACE THE PRODUCTS, BUYER WILL BE ENTITLED TO

A REFUND OF THE AMOUNT PAID BY BUYER FOR THE DEFECTIVE PRODUCTS. SELLER’S WARRANTY

LIABILITY SHALL IN NO CASE EXCEED THE ORIGINAL COST OF THE DEFECTIVE PRODUCTS. THIS

WARRANTY SHALL BE THE ONLY WARRANTY MADE BY SELLER, AND IS IN LIEU OF ALL OTHER

WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE IMPLIED WARRANTIES OF

MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ALL OF WHICH OTHER WARRANTIES

ARE HEREBY EXPRESSLY SELLER DOES NOT WARRANT, GUARANTEE, OR MAKE ANY REPRESENTATIONS

REGARDING THE USE OF OR THE RESULTS OF THE USE OF THE PRODUCTS IN TERMS OF CORRECTNESS,

ACCURACY, RELIABILITY, OR OTHERWISE AND DOES NOT WARRANT THAT THE OPERATION OF THE

PRODUCTS WILL BE UNINTERRUPTED OR ERROR FREE.

3. CLAIMS. BUYER MUST NOTIFY SELLER OF ANY CLAIM OF DEFECT OR ANY OTHER CAUSE WITHIN

THIRTY (30) DAYS AFTER DELIVERY OF THE PRODUCTS. IF BUYER FAILS TO GIVE NOTICE OF A CLAIM

WITHIN SUCH TIME PERIOD, BUYER EXPRESSLY WAIVES ANY SUCH CLAIMS. BUYER UNDERSTANDS

THAT ANY FAILURE TO NOTIFY SELLER OF A CLAIM WITHIN SUCH THIRTY (30) DAY PERIOD SHALL BE

DEEMED A COMPLETE DISCHARGE OF SELLER’S OBLIGATIONS AND THAT BUYER SHALL THEREAFTER

HAVE NO REMEDY AGAINST SELLER.

4. Security Interest. Seller shall retain a purchase money security interest in the products (as defined in

the Uniform Commercial Code) until Buyer has made complete payment for the products,

63 MOVITM User’s Manual Revision 1.10 -- February, 20th 2017

notwithstanding any prior delivery of the products by Seller to Buyer. Buyer hereby agrees, upon the

request of Seller, to join with Seller in executing one or more financing statements pursuant to the

Uniform Commercial Code in form satisfactory to Seller.

5. Liability Limitation. Seller’s liability under this Agreement shall not exceed the amounts paid by Buyer

for the products. SELLER SHALL IN NO EVENT BE LIABLE FOR ANY LOSS OF PROFITS; LOSS OF USE OF

FACILITIES, EQUIPMENT, OR SOFTWARE; OR OTHER INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR

CONSEQUENTIAL DAMAGES.

6. Use of Products. It is understood and agreed that use of Seller’s products shall be fully at the risk of

Buyer. Without limiting the foregoing, Buyer represents and agrees that the products will be used

solely for personal purposes, and not for any business, industrial, or commercial purpose, or other

applications involving potential risks of death, personal injury, or property or environmental damage,

including but not limited to medical or life support applications, or use in aircraft, aircraft devices, or

aircraft systems.

7. No License. Products or any parts thereof sold hereunder may be protected by intellectual property

rights of Seller, including, but not limited to, rights under issued and pending patents, mask work

rights, copyright rights, trademark rights and trade secret rights. Neither the sale of products or any

parts thereof hereunder nor the provision by Seller of any supporting or related documentation,

technical information or advice shall confer on Buyer any license, express or implied, under any

intellectual property rights of Seller.

8. Entire Agreement. This Agreement contains the entire agreement of the parties and supersedes any

prior written or oral agreements between them concerning the subject matter contained herein. There

are no representations, agreements, arrangements, or understandings, oral or written, between the

parties, relating to the subject matter contained in this Agreement, which are not fully expressed

herein.

9. Amendments. This Agreement may be amended only by a written amendment signed by each of the

parties. The terms and conditions of any purchase order or similar document issued by Buyer shall not

be binding against Seller unless signed by Seller.

10. Binding Effect. All terms and provisions of this Agreement shall be binding upon and shall inure to

the benefit of, and be enforceable by, the respective assigns and successors of the parties; provided,

however that Buyer may not assign this Agreement or any part thereof without the prior written

consent of Seller.

64 MOVITM User’s Manual Revision 1.10 -- February, 20th 2017

11. Notices. All notices required or permitted by this Agreement shall be in writing and shall be

addressed to the parties at the respective addresses specified on the foregoing invoice form. Notice

shall be sufficiently given for all purposes as follows: (a) when personally delivered to the recipient, in

which case notice is effective on delivery; (b) when mailed by certified mail, postage prepaid, return

receipt requested, in which case notice is effective on receipt if delivery is confirmed by a return

receipt; or (c) when delivered by overnight delivery service, charges prepaid or charged to the sender’s

account, in which case notice is effective on delivery if delivery is confirmed by the delivery service.

Either party may change its address by giving written notice thereof to the other party in accordance

with the provisions of this paragraph.

12. Governing Law. This Agreement shall be governed by and construed in accordance with the laws of

the State of California.

13. Waiver. The waiver by Seller of any provision of this Agreement shall not be deemed to be a waiver

of any other provisions hereof or of any subsequent breach by Buyer of the same or other provisions.

The consent or approval by Seller of any act taken by Buyer shall not be deemed to render

unnecessary the obtaining of Seller’s consent to or approval of any subsequent similar act by Buyer.

14. Severable. Any provision of this Agreement that shall prove to be invalid, void, or illegal shall in no

way affect, impair, or invalidate any other provision hereof, and such remaining provisions shall remain

in full force and effect.

65 MOVITM User’s Manual Revision 1.10 -- February, 20th 2017

